regularizepsf#
Global init.
Submodules#
Attributes#
Classes#
A builder that will take a series of images and construct an ArrayPSF to represent their implicit PSF. |
|
A PSF represented as a set of arrays. |
|
Representation of a transformation from a source to a target PSF that can be applied to images. |
Functions#
|
Decorate a SimpleFunctionalPSF. |
|
Decorate to create a VariedFunctionalPSF. |
Package Contents#
- class regularizepsf.ArrayPSFBuilder(psf_size: int)#
A builder that will take a series of images and construct an ArrayPSF to represent their implicit PSF.
Initialize an ArrayPSFBuilder.
- _psf_size#
- property psf_size#
- build(images: list[str] | list[pathlib.Path] | numpy.ndarray | collections.abc.Generator, star_masks: list[str] | list[pathlib.Path] | numpy.ndarray | collections.abc.Generator | None = None, hdu_choice: int | None = 0, interpolation_scale: int = 1, star_threshold: int = 3, average_method: str = 'median', percentile: float = 50)#
Build the PSF model.
- Parameters:
images (list[pathlib.Path] | np.ndarray | Generator) – images to use
- Returns:
an array PSF and the counts of stars in each component
- Return type:
(ArrayPSF, dict)
- class regularizepsf.ArrayPSF(values_cube: regularizepsf.util.IndexedCube, fft_cube: regularizepsf.util.IndexedCube | None = None, workers: int | None = None)#
A PSF represented as a set of arrays.
Initialize an ArrayPSF model.
- Parameters:
values_cube (IndexedCube) – PSF model where keys are upper left coordinates of array patches in the image
fft_cube (IndexedCube) – fft of the model
workers (int | None) – Maximum number of workers to use for parallel computation of FFT. If negative, the value wraps around from os.cpu_count(). See scipy.fft.fft for more details. Only used if fft_cube is None.
- _values_cube#
- _fft_cube = None#
- _workers = None#
- property coordinates: list[tuple[int, int]]#
Get the keys of the PSF model, i.e., where it is evaluated as an array.
- property values: numpy.ndarray#
Get the model values.
- property fft_evaluations: numpy.ndarray#
Get the model values.
- __getitem__(coord: tuple[int, int]) numpy.ndarray #
Evaluate the PSF model at specific coordinates.
- fft_at(coord: tuple[int, int]) numpy.ndarray #
Retrieve the FFT evaluation at a coordinate.
- save(path: pathlib.Path) None #
Save the PSF model to a file. Supports h5 and FITS.
- Parameters:
path (pathlib.Path) – where to save the PSF model
- Return type:
None
- classmethod load(path: pathlib.Path) ArrayPSF #
Load the PSF model from a file. Supports h5 and FITS.
- Parameters:
path (pathlib.Path) – where to load the PSF model from
- Returns:
loaded model
- Return type:
- visualize_psfs(fig: matplotlib.figure.Figure | None = None, fig_scale: int = 1, all_patches: bool = False, imshow_args: dict | None = None) None #
Visualize the PSF model.
- visualize_ffts(fig: matplotlib.figure.Figure | None = None, fig_scale: int = 1, all_patches: bool = False, imshow_args: dict | None = None) None #
Visualize the fft of the PSF.
- property sample_shape: tuple[int, int]#
Get the sample shape for this PSF model.
- __len__() int #
Get the number of coordinates evaluated in this model.
- regularizepsf.simple_functional_psf(arg: Any = None) SimpleFunctionalPSF #
Decorate a SimpleFunctionalPSF.
- regularizepsf.varied_functional_psf(base_psf: SimpleFunctionalPSF = None) VariedFunctionalPSF #
Decorate to create a VariedFunctionalPSF.
- class regularizepsf.ArrayPSFTransform(transfer_kernel: regularizepsf.util.IndexedCube)#
Representation of a transformation from a source to a target PSF that can be applied to images.
Initialize a PSFTransform.
- Parameters:
transfer_kernel (TransferKernel) – the transfer kernel required by this ArrayPSFTransform
- _transfer_kernel#
- property psf_shape: tuple[int, int]#
Retrieve the shape of the individual PSFs for this transform.
- property coordinates: list[tuple[int, int]]#
Retrieve the coordinates of the individual PSFs for this transform.
- __len__() int #
Retrieve the number of coordinates used to represent this transform.
- classmethod construct(source: regularizepsf.psf.ArrayPSF, target: regularizepsf.psf.ArrayPSF, alpha: float, epsilon: float) ArrayPSFTransform #
Construct an ArrayPSFTransform from a source to a target PSF.
- Parameters:
- Returns:
corresponding ArrayPSFTransform instance
- Return type:
- apply(image: numpy.ndarray, workers: int | None = None, pad_mode: str = 'symmetric') numpy.ndarray #
Apply the PSFTransform to an image.
- Parameters:
image (np.ndarray) – image to apply the transform to
workers (int | None) – Maximum number of workers to use for parallel computation of FFT. If negative, the value wraps around from os.cpu_count(). See scipy.fft.fft for more details.
pad_mode (str) – how to pad the image when computing ffts, see np.pad for more details.
- Returns:
image with psf transformed
- Return type:
np.ndarray
- visualize(fig: matplotlib.figure.Figure | None = None, fig_scale: int = 1, all_patches: bool = False, imshow_args: dict | None = None) None #
Visualize the transfer kernels.
- save(path: pathlib.Path) None #
Save a PSFTransform to a file. Supports h5 and FITS.
- Parameters:
path (pathlib.Path) – where to save the PSFTransform
- Return type:
None
- classmethod load(path: pathlib.Path) ArrayPSFTransform #
Load a PSFTransform object. Supports h5 and FITS.
- Parameters:
path (pathlib.Path) – file to load the PSFTransform from
- Return type:
PSFTransform
- __eq__(other: ArrayPSFTransform) bool #
Test equality between two transforms.
- regularizepsf.__version__#