regularizepsf.transform#
Tools to transform from one PSF to another.
Classes#
Representation of a transformation from a source to a target PSF that can be applied to images. |
Module Contents#
- class regularizepsf.transform.ArrayPSFTransform(transfer_kernel: regularizepsf.util.IndexedCube)#
Representation of a transformation from a source to a target PSF that can be applied to images.
Initialize a PSFTransform.
- Parameters:
transfer_kernel (TransferKernel) – the transfer kernel required by this ArrayPSFTransform
- _transfer_kernel#
- property psf_shape: tuple[int, int]#
Retrieve the shape of the individual PSFs for this transform.
- property coordinates: list[tuple[int, int]]#
Retrieve the coordinates of the individual PSFs for this transform.
- __len__() int #
Retrieve the number of coordinates used to represent this transform.
- classmethod construct(source: regularizepsf.psf.ArrayPSF, target: regularizepsf.psf.ArrayPSF, alpha: float, epsilon: float) ArrayPSFTransform #
Construct an ArrayPSFTransform from a source to a target PSF.
- Parameters:
- Returns:
corresponding ArrayPSFTransform instance
- Return type:
- apply(image: numpy.ndarray, workers: int | None = None, pad_mode: str = 'symmetric') numpy.ndarray #
Apply the PSFTransform to an image.
- Parameters:
image (np.ndarray) – image to apply the transform to
workers (int | None) – Maximum number of workers to use for parallel computation of FFT. If negative, the value wraps around from os.cpu_count(). See scipy.fft.fft for more details.
pad_mode (str) – how to pad the image when computing ffts, see np.pad for more details.
- Returns:
image with psf transformed
- Return type:
np.ndarray
- visualize(fig: matplotlib.figure.Figure | None = None, fig_scale: int = 1, all_patches: bool = False, imshow_args: dict | None = None) None #
Visualize the transfer kernels.
- save(path: pathlib.Path) None #
Save a PSFTransform to a file. Supports h5 and FITS.
- Parameters:
path (pathlib.Path) – where to save the PSFTransform
- Return type:
None
- classmethod load(path: pathlib.Path) ArrayPSFTransform #
Load a PSFTransform object. Supports h5 and FITS.
- Parameters:
path (pathlib.Path) – file to load the PSFTransform from
- Return type:
PSFTransform
- __eq__(other: ArrayPSFTransform) bool #
Test equality between two transforms.